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We consider the following three problems:

1. Let U be a g-subset of GF(q?) with the properties 0, 1 € U and v — v is a
square for all u, v € U. Does it follow that U consists of the elements of

the subfield GF(q)? Here g is odd.
2. Let f : GF(q) — GF(q) be any function, and let

sz{%j(y) ety w,yeGF(q>}

be the set of difference quotients (directions, slopes). What are the possi-
bilities for |Dy|?

3. Let B be a subset of PG(2,q), the Desarguesian projective plane of order
q, such that every line contains at least one point of B. What are the
possibilities for |B|?

The third problem is the oldest of the three. The subset B is called a blocking
set. To make the problem interesting we restrict ourselves to minimal block-
ing sets, that is blocking sets not containing a proper subset that is still a
blocking set. The smallest possible blocking set is always a line. The most
interesting problem is the next possible size. Essentially the problem is due to
RICHARDSON [15] who considered the plane of order 3, although already in [11]
it is mentioned that the only minimal blocking sets in the Fano plane PG(2,2)
are the lines. In PG(2,3) the next possible size is 6. The problem was made
popular by DI PAOLA [12] who determined the next possible size in the planes
of order 4, 5, 7, 8 and 9 (answers: 7, 9, 12, 13 and 13). The most general
result for the size of a blocking set in arbitrary (not necessarily Desarguesian)
projective planes is BRUEN’s result [§]
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A minimal blocking set B in a projective plane of order n is either a line,
or contains at least n + /n + 1 points with equality if and only if B consists of
the points of a Baer subplane.

The second problem is mentioned in [14] as one of the applications of Rédei’s
theory of lacunary polynomials. Rédei’s result is that unless the points are all
on a line, either the number of difference quotiens is large: at least (¢ +1)/2,
or the number is in an interval of the form

for some e = 1,...,|n/2], where ¢ = p™. In the particular case that ¢ = p
is prime these intervals are not there, and the lower bound was improved to
(p + 3)/2 by Megyesi, a student of Rédei. One of REDEI’s challenges in his
book [14] was to find a more direct proof of this result. For this special case
(that ¢ is an odd prime) such a proof was given by LOVASZ and SCHRIJVER
[10] together with a characterization of the corresponding function. It turns
out that essentially f(z) = z(9t1)/2,

The connection between problems 2 and 3 comes from the observation that
a blocking set can be formed by starting with the graph of a function f :
GF(q) — GF(q) in the affine plane AG(2,q), and then adding on the line at
infinity the points corresponding to slopes determined by this graph. In this
way a blocking set of size ¢ + |Dy| is obtained. Although these blocking sets
seem to be very special, in fact all known examples of ‘small’ blocking sets
are of this form (we say that a blocking set is small if its size is less than
q+(q+3)/2).

The first problem finally comes from a conjecture by van Lint and MAC-
WIiLLIAMS [13] and has to do with the characterization of the vectors of min-
imum weight in quadratic residue codes. It can be related to problem 2 as
follows: If we identify the field GF(q?) with the affine plane AG(2,q) in a
suitable way (respecting the vector space structure over GF(q), then the set
U turns in to a set of points, and the condition that u — v is always a square
means that the collection of directions determined by U is contained in the set
of (¢ +1)/2 ‘square’ directions. If g is prime, this shows then that U is a line
(and since 0, 1 € U in fact GF(q)) by the result of Megyesi/Lovész-Schrijver.

The first problem was completely settled in the positive in [1]. The basic
idea was to consider the polynomial (in GF(q?)[X])

Fx) = [L(X = ).
uclU

One has to show that under the conditions in the problem f(X) = X9 —
X. In other words, most of the elementery symmetric functions of the set U
have to vanish. This was accomplished by a number of tricks and geometric
considerations that somehow worked, but precisely why remains obscure.

As a consequence of these investigations we became very interested in prob-
lems 2 and 3. To get a feeling for problem 2 consider the following examples of
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functions determining few directions. Again ¢ = p™ and ¢; = p® where e|n so

that GF(q1) is a subfield of GF(q).

Example 1. f(z) = 29 In this case (f(z) — f(y))/(z —y) = (z — y)© 71,
and the number of (¢; — 1)-th powers is exactly (¢ — 1)/(¢1 — 1). This shows
that the upper bound in the Rédei intervals can be realized for those intervals
where e | n.

Example 2. f(z) = Try_q, () =z + 29 + 2% + ...+ 299 In this case

flz) = fly) _ Tr(z —y)
-y r—y ’

and it is an exercise to show that Tr(z)/z takes on exactly ¢/q1 + 1 different
values. This shows that the lower bound in Rédei’s interval is approximately
correct, again for e|n.

There are other examples but they give a number of directions between the
above two limits. In fact the description of the known examples with at most
(¢ + 1)/2 directions is best given in a more geometric way: The affine plane
AG(2,q), or better the vector space GF(q)? can also be considered as a vector
space of dimension 2d over a subfield GF(q;) of GF(q), where ¢ = ¢f. If U
is a d-dimensional subspace of this vector space, then U has g points, and it
will determine a number of directions in the interval [¢/q1 + 1, (¢ —1)/(q1 — 1)]
(assuming that ¢; was choosen maximal for U). A set U like this will be called
GF(q1)-linear. The above examples where first described in the more general
setting of translation planes in [7].

Our most recent result almost completely settles the second problem [6]:

Let U C GF(q)? be a point set of size q containing the origin, let D be the
set of slopes of secants of X, and put N := |D|. Let e (with 0 < e < n) be the
largest integer such that each line with slope in D meets U in a multiple of p°
points. Then we have one of the following:

(i) e=0and (¢g+3)/2< N <q+1,
(ii) e=1,p=2,and (¢+5)/3< N <q-—-1,
(i) p°* > 2, e|n, and ¢/p°+1 < N < (¢—1)/(p° —1),
(iv)
Moreover, if p° > 3 or (p® =3 and N = q/3+1), then U is GF(p®)-linear, and
all possibilities for N can be determined explicitly (in principle).
The line of attack on this problem is basically due to Rédei, although the ap-

proach in [5] is perhaps more transparant. Associated to the set U in the affine
plane AG(2,q) is now a polynomial in two variables (the Rédei polynomial)

e=nand N =1.

q
r(X,V)= [ (X4wmY —up) =) pi(¥)X7.
(u1,uz)€U j=0
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For y € GF(q), let ry(X) :=r(X,y). Then r, is a monic polynomial of degree
q in X. This polynomial codes the intersection sizes of the lines in direction y
with U - indeed, these intersection sizes are the multiplicities of the roots of 7.
If y is not a secant direction, then we see all possible roots with multiplicity
one:

ry(X)=X"-X o y¢gD.

It follows that p; = 0if 1 < j < g and 7 > N; indeed, we have found ¢ — NV
distinct zeros of the polynomial p;(Y) which has degree at most ¢ — j (in fact
one more with the correct definition of p;(c0)).

If y is a secant direction, then r, becomes a polynomial that factors in
linears, and has a lot of vanishing coefficients. It is here that the technical part
starts, which consists of the investigation of such polynomials. This finally
leads to the conclusion that p; = 0 unless j is a power of p°®, and the result
follows.

Finally we consider the third problem. Using Rédei’s results, but not his
techniques the lower bound for blocking sets in Desarguesian planes of non-
square order was first improved to g + v/2¢ + 1 [3, 9], but it was clear that
in order to get a substantial improvement not just his results, but the theory
behind it should somehow be made to work.

That this was possible was finally demonstrated in [2], where for the case
g = p the lower bound was proved to be indeed p + (p + 3)/2. This lead to
new inspiration for the problem of characterizing small blocking sets and work
by SzONYI [16] gives a major step in this direction. His main result gives
Rédei-type intervals for the size of small blocking sets:

Let B be a small minimal blocking set in PG(2,q), ¢ = p™. Then

gp° +1—/(gp® +1)* — 4¢°p°
2 )

_<iB|<

1
q+ +pﬂ+2_

for some integer e, 1 < e. The order of magnitude of the upper bound is
q+2q/p°

Again the principal idea is to investigate the associated Rédei polynomial
but now with the aid of results from Algebraic Geometry on the structure of
curves with many rational points.

This is still work in progress. The obvious first step to be taken now is that
the intervals in SzOnyi’s theorem should be restricted to those coming from
subfields, that is e|n. Much more should be true however:

CONJECTURE: Small minimal blocking sets are of Rédei type.
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